18CV752

Seventh Semester B.E. Degree Examination, Feb./Mar. 2022
 Numerical Methods and Applications

Time: 3 hrs.
Max. Marks: 100
Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. Missing data may be suitably assumed.

Module- 1

1 a. Find the real root of the equation, $\cos x=3 x-1$ correct to three decimal places using iteration method.
b. Solve the system of linear equations by using Gauss elimination method,
$4 x_{1}+2 x_{2}+3 x_{3}=4$
$2 x_{1}+2 x_{2}+x_{3}=6$
$\mathrm{x}_{1}-\mathrm{x}_{2}+\mathrm{x}_{3}=0$
(10 Marks)

OR

2 a. Using Newton-Raphson method, find the real root of $x \log _{10} x=1.2$ correct to five decimal places.
(10 Marks)
b. Solve the following set of linear equations by Gauss-Seidel method.
$10 x_{1}+x_{2}+x_{3}=12$
$2 \mathrm{x}_{1}+10 \mathrm{x}_{2}+\mathrm{x}_{3}=13$
$2 \mathrm{x}_{1}+2 \mathrm{x}_{2}+10 \mathrm{x}_{3}=14$
Carryout five iterations.
(10 Marks)

Module-2

3 a. Using Lagrange's interpolation formula, find a polynomial which passes through the points $(0,-12),(1,0),(3,6),(4,12)$.
(05 Marks)
b. Using Lagrange's interpolation formula, find the value of ' y ' corresponding to $x=10$ from the following table:
(05 Marks)

x	5	6	9	11
$y=f(x)$	12	13	14	16

c. The values of $\sin x$ are given below for different values of x. Find the value of $\sin 32^{\circ}$ using Newton's forward interpolation formula.
(10 Marks)

$x=$	30°	35°	40°	45°	50°
$y=\sin x$	0.5	0.5736	0.6428	0.7071	0.7660

OR

4 a. Use Newton's diyided difference formula and evaluate $f(6)$ given,

x	5	7	11	13	21
$\mathrm{f}(\mathrm{x})$	150	392	1452	2366	9702

(10 Marks)
b. The following data gives the melting point of an alloy of lead and zinc, where t is the temperature in degrees C and P is the percentage of lead in the alloy. Find the melting point of the alloy containing 84% lead. Use Newton's backward difference formula.

P	40	50	60	70	80	90
t	184	204	226	250	276	304

(10 Marks)

Module-3

5 a. Find the value of $\int_{0}^{1} \frac{d x}{1+x^{2}}$, taking 5 sub intervals by trapezoidal rule. Correct to five significant figures. Also compare it with its exact value.
(10 Marks)
b. Evaluate $\int_{2}^{3} \frac{\cos 2 x}{1+\sin x}$ by using Gauss quadrature three point formula.
(10 Marks)

OR

6 a. The velocity of a train which starts from rest is given by the following table Table Q6 (a). Estimate approximately the total distance run in 20 minutes using Simpson's $\frac{1}{3}^{\text {rd }}$ rule.
(10 Marks)

$\mathrm{t}(\mathrm{min})$	2	4	6	8	10	12	14	16	18	20
$\mathrm{v}(\mathrm{km} / \mathrm{hr})$	16	28.8	40	46.4	51.2	32	17.6	8	3.2	0

Table Q6 (a)
b. Evaluate the integral $I=\iint_{0}^{0.2} e^{y} \sin x d x d y$ by,
(i) Trapezoidal rule with $\mathrm{h}=\mathrm{k}=0.2$ and
(ii) Simpson's $\frac{1^{\text {rd }}}{3}$ rule with $\mathrm{h}=\mathrm{k}=0.1$
(10 Marks)

Module-4

7 a. Find by Taylor's series method, the values of y at $x=0.1$ and $x=0.2$ to five places of decimals from $\frac{d y}{d x}=x^{2} y-1, y(0)=1$.
(10 Marks)
b. Given $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(1+\mathrm{x}^{2}\right) \mathrm{y}^{2}$ and $\mathrm{y}(0)=1, y(0.1)=1.06, \mathrm{y}(0.2)=1.12, \mathrm{y}(0.3)=1.21$. Evaluate $y(0.4)$ by Milne's predictor corrector method.
(10 Marks)

OR

8 a. Solve by Euler's method the following differential equation at $x=0.1$, correct to four decimal places, with the initial condition $y(0)=1, h=0.02, \frac{d y}{d x}=\frac{y-x}{y+x}$.
(10 Marks)
b. Using Runge-Kutta method of order 4, find ' y ' for $x=0.1,0.2$ given that $\frac{d y}{d x}=x y+y^{2}$, $y(0)=1$.
(10 Marks)

Module-5

9 The deflection of a beam is governed by the equation $\frac{d^{4} y}{d x^{4}}+81 y=\phi(x)$, where $f(x)$ is given by the table,

x	$\frac{1}{3}$	$\frac{2}{3}$	1
$\phi(\mathrm{x})$	81	162	243

and boundary condition $y(0)=y^{\prime}(0)=y^{\prime \prime}(1)=y^{\prime \prime \prime}(1)=0$. Evaluate the deflection at the pivoted points of the beam using three sub-intervals.
(20 Marks)

OR

10 a. Solve the equation $\frac{\partial u}{\partial y}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions $u(x, 0)=\sin \pi x, 0 \leq x \leq 1$; $u(0, t)=0, u(1, t)=0$, using Crank-Nicolson method. Carryout computations for two levels, taking $\mathrm{h}=\frac{1}{3}, \mathrm{~K}=\frac{1}{36}$.
(10 Marks)
b. Find the solution of the initial boundary value problem, $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq 1$; subject to the initial conditions $u(x, 0)=\sin \pi x, 0 \leq x \leq 1,\left(\frac{\partial u}{\partial x}\right)(x, 0)=0,0 \leq x \leq 1$ and the boundary conditions $u(0, t)=0, u(1, t)=0, t>0$, by using in the explicit scheme. Take $h=K=0.2$.
(10 Marks)

