USN

Seventh Semester B.E. Degree Examination, Feb./Mar.2022 **Numerical Methods and Applications**

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Missing data may be suitably assumed.

Module-1

- Find the real root of the equation, $\cos x = 3x 1$ correct to three decimal places using iteration method. (10 Marks)
 - b. Solve the system of linear equations by using Gauss elimination method,

$$4x_1 + 2x_2 + 3x_3 = 4$$

$$2x_1 + 2x_2 + x_3 = 6$$

$$x_1 - x_2 + x_3 = 0$$

(10 Marks)

18CV752

- Using Newton-Raphson method, find the real root of $x \log_{10} x = 1.2$ correct to five decimal places. (10 Marks)
 - b. Solve the following set of linear equations by Gauss-Seidel method.

$$10x_1 + x_2 + x_3 = 12$$

$$2x_1 + 10x_2 + x_3 = 13$$

$$2x_1 + 2x_2 + 10x_3 = 14$$

Carryout five iterations.

(10 Marks)

Module-2

- Using Lagrange's interpolation formula, find a polynomial which passes through the points 3 (0, -12), (1, 0), (3, 6), (4, 12).
 - b. Using Lagrange's interpolation formula, find the value of 'y' corresponding to x = 10 from the following table: (05 Marks)

X	5	6	9	11
y = f(x)	12	13	14	16

The values of sinx are given below for different values of x. Find the value of sin 32° using Newton's forward interpolation formula. (10 Marks)

x =			40°		50°
$y = \sin x$	0.5	0.5736	0.6428	0.7071	0.7660

OR

Use Newton's divided difference formula and evaluate f(6) given,

X	5	7	11	13	21
f(x)	150	392	1452	2366	9702

(10 Marks)

The following data gives the melting point of an alloy of lead and zinc, where t is the temperature in degrees C and P is the percentage of lead in the alloy. Find the melting point of the alloy containing 84% lead. Use Newton's backward difference formula.

I	P	40	50	60	70	80	90
					250		

(10 Marks)

Module-3

- Find the value of $\int_{0}^{1} \frac{dx}{1+x^2}$, taking 5 sub intervals by trapezoidal rule. Correct to five 5 significant figures. Also compare it with its exact value. (10 Marks)
 - b. Evaluate $\int_{2}^{3} \frac{\cos 2x}{1 + \sin x}$ by using Gauss quadrature three point formula. (10 Marks)

The velocity of a train which starts from rest is given by the following table Table Q6 (a). 6 Estimate approximately the total distance run in 20 minutes using Simpson's $\frac{1}{3}$ rule.

(10 Marks)

t(min)	2		-	8 10				_
v(km/hr)	16	28.8	40	46.4 51.2	32	17.6	8 3.2	0

Table Q6 (a)

- Evaluate the integral $I = \int_{0.0}^{0.2} \int_{0.0}^{0.2} e^{y} \sin x \, dx \, dy$ by,
 - Trapezoidal rule with h = k = 0.2 and (i)

(ii) Simpson's
$$\frac{1}{3}^{rd}$$
 rule with $h = k = 0.1$ (10 Marks)

- Module-4

 Find by Taylor's series method, the values of y at x = 0.1 and x = 0.2 to five places of decimals from $\frac{dy}{dx} = x^2y - 1$, y(0) = 1. (10 Marks) b. Given $\frac{dy}{dx} = \frac{1}{2}(1 + x^2)y^2$ and y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21. Evaluate
 - y(0.4) by Milne's predictor corrector method. (10 Marks)

- Solve by Euler's method the following differential equation at x = 0.1, correct to four 8 decimal places, with the initial condition y(0) = 1, h = 0.02, $\frac{dy}{dx} = \frac{y - x}{y + x}$. (10 Marks)
 - Using Runge-Kutta method of order 4, find 'y' for x = 0.1, 0.2 given that $\frac{dy}{dx} = xy + y^2$, y(0) = 1. (10 Marks)

Module-5

The deflection of a beam is governed by the equation $\frac{d^4y}{dx^4} + 81y = \phi(x)$, where f(x) is given by the table.

by the table,							
X	1	2	1				
	$\frac{}{3}$	3					
$\phi(x)$	81	162	243				

and boundary condition y(0) = y'(0) = y''(1) = y'''(1) = 0. Evaluate the deflection at the pivoted points of the beam using three sub-intervals. (20 Marks)

OR

- 10 a. Solve the equation $\frac{\partial u}{\partial y} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(x,0) = \sin \pi x$, $0 \le x \le 1$; u(0,t) = 0, u(1,t) = 0, using Crank-Nicolson method. Carryout computations for two levels, taking $h = \frac{1}{3}$, $K = \frac{1}{36}$. (10 Marks)
 - b. Find the solution of the initial boundary value problem, $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, $0 \le x \le 1$; subject to the initial conditions $u(x,0) = \sin \pi x$, $0 \le x \le 1$, $\left(\frac{\partial u}{\partial x}\right)(x,0) = 0$, $0 \le x \le 1$ and the boundary conditions u(0,t) = 0, u(1,t) = 0, t > 0, by using in the explicit scheme. Take h = K = 0.2. (10 Marks)

* * * * *